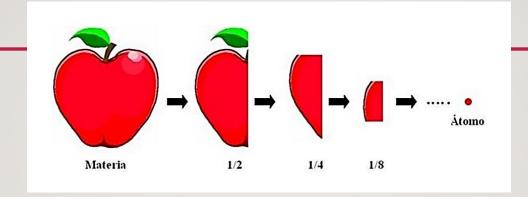

MODELOS ATÓMICOS FUNCIONES QUÍMICAS INORGÁNICAS ESTADO GASEOSO

ING. CÉSAR HORNA TOCAS

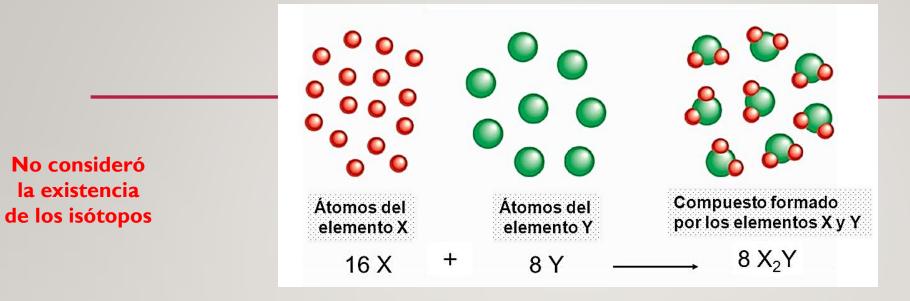


IDEA DE ÁTOMO

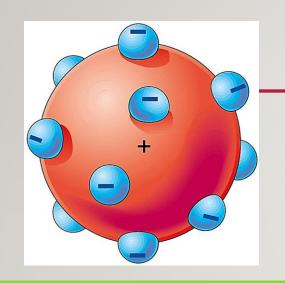
Discontinuidad de la Materia

Demócrito y Leucipo

Átomo: Etimológicamente significa A (sin) y Tomo (partes), sin división o sin partes.


Todo está formado por corpúsculos invisibles e indestructibles llamados átomos

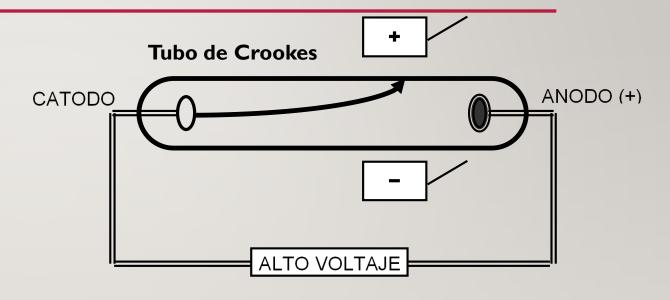
Empédocles


Continuidad de la Materia

MODELO ATÓMICO DE DALTON

- ✓ Los Elementos están constituidos de átomos
- ✓ Los átomos de un mismo elemento son iguales e indivisibles
- ✓ Los compuestos contienen átomos combinados en arreglos definidos de modo que existe un número definido de átomos de cada elemento
- ✓ Una reacción química es el reordenamiento de los átomos en las moléculas.

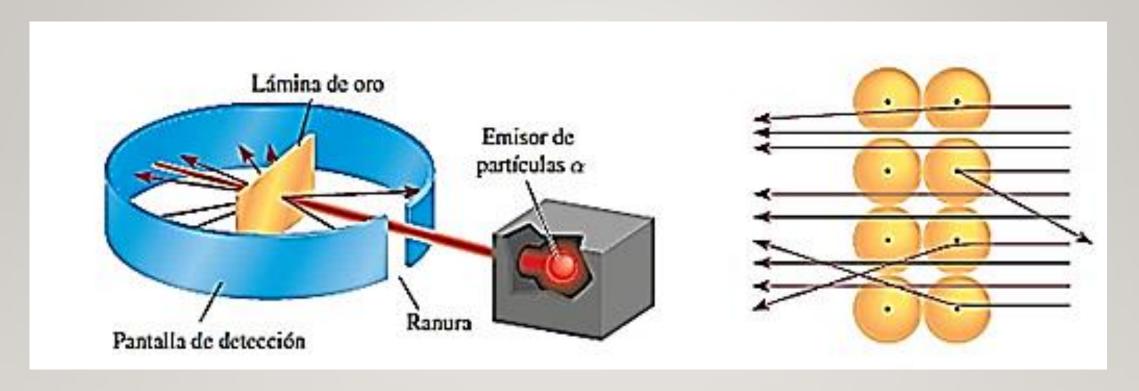
MODELO ATÓMICO DE THOMSON



El átomo es neutro

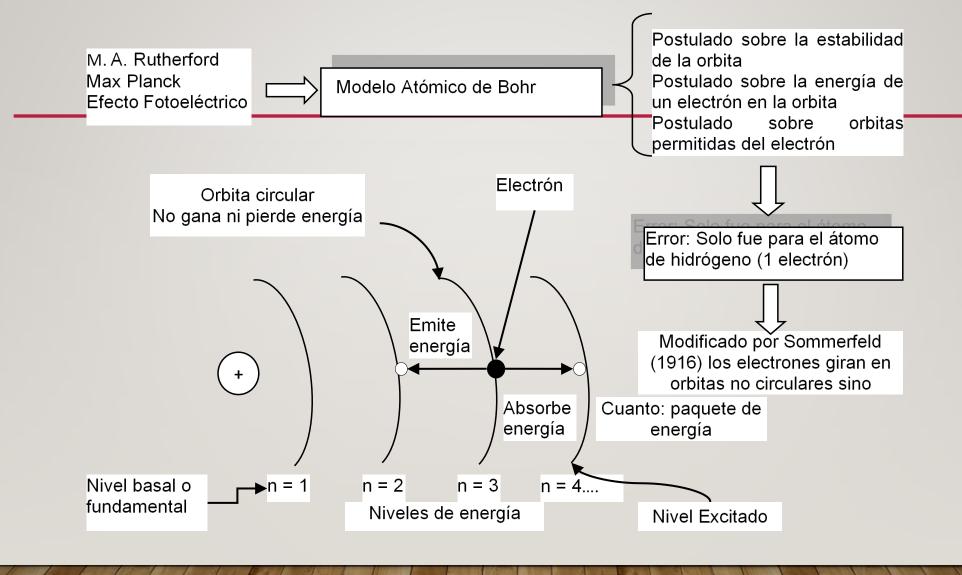
El Átomo está formado por electrones los cuales se mueven (vibratorio) en una esfera de carga eléctrica positiva uniforme

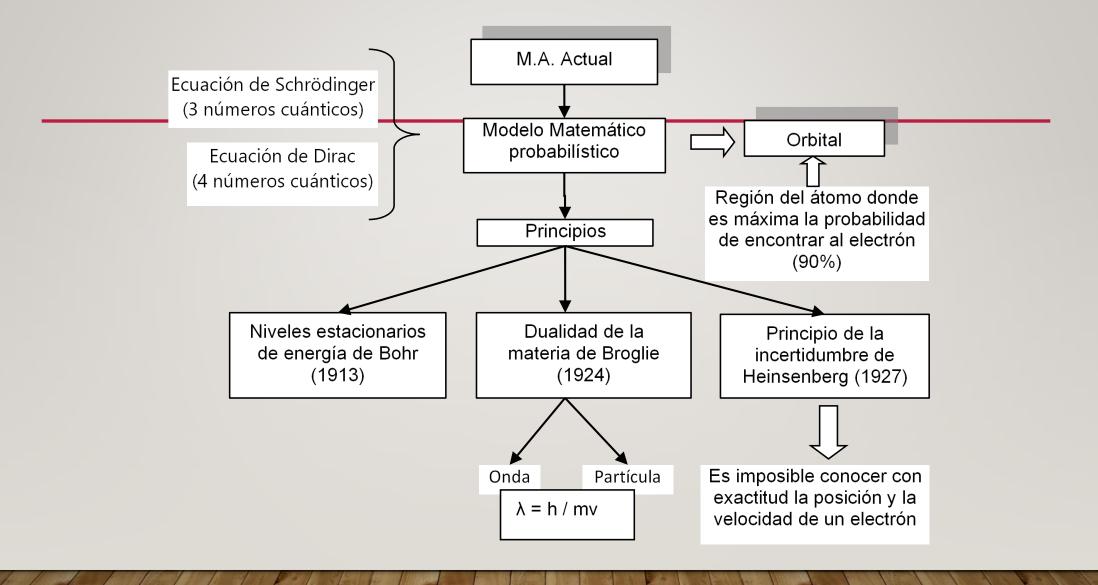
Este modelo se asemeja a un budín de pasas, donde las pasas son como electrones y la esfera como el budín


Experimento de los rayos catódicos (Thomson)

$$\Rightarrow \frac{e^-}{m} = 1,76.10^8$$

Coulombs / gramo


MODELO ATÓMICO DE RUTHERFORD


Experimento de la laminilla de oro

Descubrió el núcleo

MODELO ATÓMICO DE BOHR

MODELO ATÓMICO ACTUAL

Principales funciones químicas inorgánicas

Función química	Ejemplos
Oxido básico (oxido metálico)	Na ₂ O CaO Al ₂ O ₃
Oxido acido (oxido no metálico)	CO ₂ SO ₃ CI ₂ O ₇
Hidróxido	Mg(OH) ₂ NaOH Al(OH) ₃
Hidruro metálico	NaH BaH ₂ FeH ₃
Acido oxácido	H ₂ SO ₄ HNO ₃ H ₃ PO ₄
Acido hidrácido	HCI H ₂ S HBr
Sal oxisal	CaCO ₃ KNO ₃ Fe ₂ (SO ₄) ₃
Sal haloidea	NaCl FeCl ₃ KBr

VALENCIA Y ESTADO DE OXIDACIÓN

La valencia se le designa como la capacidad que tienen los átomos para combinarse con otros, o la capacidad de los átomos para formar moléculas o compuestos. La valencia de un átomo depende de sus electrones colocados en su última capa o nivel.

Ca v: 2

Ca E.O:+2

El estado de oxidación o también llamado número de oxidación indica la naturaleza eléctrica relativa de los átomos en un compuesto. Se puede entender como el número de electrones ganados o perdidos en el enlace químico.

$$Ca^{+2}$$
 O^{-2} --- >

CaO

$$AI^{+3}$$
 O^{-2} --- >

 Al_2O_3

Óxido básico - óxido metálico

Compuesto	IUPAC	Stock	Tradicional
FeO	monóxido de hierro	óxido de hierro (II)	óxido ferroso
Fe ₂ O ₃	trióxido de dihierro	óxido de hierro (III)	óxido férrico
Li ₂ O	monóxido de dilitio	óxido de litio	óxido lítico o de litio

Óxido ácido – óxido no metálico

Compuesto	IUPAC	Stock	Tradicional
SO	monóxido de azufre	óxido de azufre (II)	Anhídrido hiposulfuroso
SO ₂	dióxido de azufre	óxido de azufre (IV)	Anhídrido sulfuroso
SO ₃	trióxido de azufre	óxido de azufre (VI)	Anhídrido sulfúrico
СО	monóxido de carbono	óxido de carbono (II)	Anhídrido carbonoso
CO ₂	dióxido de carbono	óxido de carbono (IV)	Anhídrido carbónico

Hidruros metálicos e Hidróxidos

	Hidruros metalicos MH _V	Hidróxidos M(OH) _V
LiH	Hidruro de Litio	NaOH Hidróxido de Sodio
CaH ₂	Hidruro de Calcio	Ca(OH) ₂ Hidróxido de Calcio
AlH ₃	Hidruro de Aluminio	Ba(OH) ₂ Hidróxido de Bario
CuH	Hidruro de Cobre (I)	Fe(OH) ₂ Hidróxido Ferroso
	Hidruro Cuproso	Hidróxido de Hierro (II)
NaAlH ₄	Hidruro doble de Sodio y Aluminio	Fe(OH) ₃ Hidróxido Férrico
	Hidruro de Sodio y Aluminio	Hidróxido de Hierro (III)

Donde M: metal y V: valencia o estado de oxidación del metal

ESTADO GASEOSO

Tabla 5.1 Algunas sustancias que se encuentran como gases a 1 atm y 25°C	
Elementos	Compuestos
H ₂ (hidrógeno molecular)	HF (fluoruro de hidrógeno)
N ₂ (nitrógeno molecular)	HCl (cloruro de hidrógeno)
O2 (oxígeno molecular)	CO (monóxido de carbono)
O ₃ (ozono)	CO ₂ (dióxido de carbono)
F ₂ (flúor molecular)	CH ₄ (metano)
Cl ₂ (cloro molecular)	NH ₃ (amoniaco)
He (helio)	NO (óxido nítrico)
Ne (neón)	NO ₂ (dióxido de nitrógeno)
Ar (argón)	N ₂ O (óxido nitroso)
Kr (kriptón)	SO ₂ (dióxido de azufre)
Xe (xenón)	H ₂ S (sulfuro de hidrógeno)
Rn (radón)	HCN (cianuro de hidrógeno)*

^{*} El punto de ebullición del HCN es 26°C, pero es lo suficientemente bajo para considerarlo como gas en condiciones atmosféricas ordinarias.

Todos los gases poseen las siguientes características físicas :

- Adoptan la forma y el volumen del recipiente que los contiene.
- ✓ Se consideran los más compresibles de los estados de la materia.
- ✓ Cuando se encuentran confi nados en el mismo recipiente se mezclan en forma completa y uniforme.
- ✓ Tienen densidades mucho menores que los sólidos y líquidos.

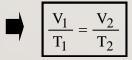
ECUACION GENERAL DE LOS GASES

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

LEY DE BOYLE – MARIOTTE (P, V=variables; T° = constante)

$$P_1 V_1 = P_2 V_2 = constante$$

LEY DE CHARLES (V, T°=variables; p = constante)


Matemáticamente:

 V_1 = volumen inicial

 V_2 = volumen final

 T_1 = temperatura inicial

 T_2 = temperatura final

(Presión constante)

LEY DE GAY – LUSSAC (P, T° = variables; V = constante)

 P_1 = presión inicial

 P_2 = presión final

 T_1 = temperatura inicial

 T_2 = temperatura final

$$\boxed{\frac{P_1}{T_1} = \frac{P_2}{T_2}}$$

(volumen constante)

ECUACION UNIVERSAL DE LOS GASES

$$PV = nRT$$

$$R = 0.082 \qquad \frac{\text{atm} - \ell}{\text{mol} - {}^{\circ}\text{K}}$$

Ahora, si se considera:

n = n de moles

w = peso del gas

M: peso molecular

$$n = \frac{W}{M}$$

$$PV = \frac{W}{\overline{M}} RT$$